Skip to main content

Nature Nanotechnology
http://www.nature.com/nnano/current_issue/rss/

Ziyue Li

Abstract

Reducing individual inflammatory factors does not always translate into clinical efficacy in rheumatoid arthritis (RA), an autoimmune disease characterized by joint inflammation. Proinflammatory M1 macrophages are a key driver of the hyperinflammatory joint microenvironment, which also promotes the progression of RA. Here we show that folate-receptor-targeted photosynthetic nanothylakoid (FA-PEG-NTK)-based phototherapy reprogrammes macrophages from M1 to anti-inflammatory M2, and successfully remodels the inflammatory RA microenvironment. The nanothylakoids were sourced from plant-derived thylakoids and developed by surface modification with distearoyl phosphoethanolamine–polyethylene glycol (PEG) via hydrophobic interactions to preserve their photocatalytic enzymes. We show that upon light irradiation in a mouse macrophage model of inflammation, the FA-PEG-NTK system generates oxygen and nicotinamide adenine dinucleotide phosphate, alleviating hypoxia and reducing reactive oxygen species. This rebalances the oxidative stress in M1 macrophages, thereby remodelling the inflammatory microenvironment in RA. We also show that in a collagen-induced arthritis rat model, FA-PEG-NTK-mediated phototherapy notably alleviated synovial hyperplasia and enhanced bone and cartilage regeneration, outperforming the clinical treatment methotrexate, with no apparent side effects.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */

/* style specs end */

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
.article-buy-button {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto, Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
color: #069;
}
/* style specs end */

Fig. 1: Preparation and characterization of PEG-NTK.
Fig. 2: Catalase and photosynthetic enzyme activities of PEG-NTK.
Fig. 3: Active targeting of M1 macrophage surrogates by FA-PEG-NTK.
Fig. 4: In vitro phenotypic transition of macrophages induced by FA-PEG-NTK-based phototherapy.
Fig. 5: NIR fluorescence imaging of the in vivo targeting-ability assay of FA-PEG-NTK in CIA rat models.
Fig. 6: In vivo FA-PEG-NTK-based photoimmunotherapy for CIA rat models.
Fig. 7: Single-cell RNA analysis reveals macrophage reprogramming in CIA rat models joints following FA-PEG-NTK treatment.

Data availability

All the data supporting the findings of this study are presented in the Article and its Supplementary Information. The bulk transcriptome and single-cell RNA sequencing data generated in this study have been deposited in the NCBI Sequence Read Archive (SRA) under the BioProject accession number PRJNA1312955 and PRJNA1314299. The proteomics data have been deposited in the iProX database under accession number IPX0013257000. Source data are provided with this paper.

References

  1. Aletaha, D. & Smolen, J. S. Diagnosis and management of rheumatoid arthritis: a review. JAMA 320, 1360–1372 (2018).

    Article 
    PubMed 

    Google Scholar
     

  2. Gravallese, E. M. & Firestein, G. S. Rheumatoid arthritis—common origins, divergent mechanisms. N. Engl. J. Med. 388, 529–542 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  3. Zhang, F. et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 623, 616–624 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  4. Fearon, U., Hanlon, M. M., Floudas, A. & Veale, D. J. Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nat. Rev. Rheumatol. 18, 398–414 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  5. Buckley, C. D., Ospelt, C., Gay, S. & Midwood, K. S. Location, location, location: how the tissue microenvironment affects inflammation in RA. Nat. Rev. Rheumatol. 17, 195–212 (2021).

    Article 
    PubMed 

    Google Scholar
     

  6. Weyand, C. M. & Goronzy, J. J. Immunometabolism in early and late stages of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 291–301 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  7. Boutet, M. A. et al. Novel insights into macrophage diversity in rheumatoid arthritis synovium. Autoimmun. Rev. 20, 102758 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  8. Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Prim. 2, 16072 (2016).

    Article 
    PubMed 

    Google Scholar
     

  9. Burmester, G. R. & Pope, J. E. Novel treatment strategies in rheumatoid arthritis. Lancet 389, 2338–2348 (2017).

    Article 
    PubMed 

    Google Scholar
     

  10. Nissen, S. E. et al. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N. Engl. J. Med. 375, 2519–2529 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  11. Erhardt, D. P. et al. Low persistence rates in patients with rheumatoid arthritis treated with triple therapy and adverse drug events associated with sulfasalazine. Arthritis Care Res. 71, 1326–1335 (2019).

    Article 
    CAS 

    Google Scholar
     

  12. Zhu, Y. et al. Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. Nano Today 42, 101358 (2022).

    Article 
    CAS 

    Google Scholar
     

  13. Nizet, V. & Johnson, R. S. Interdependence of hypoxic and innate immune responses. Nat. Rev. Immunol. 9, 609–617 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  14. Zhao, Y. et al. Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat. Commun. 13, 6758 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  15. Zhang, Q. et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13, 1182–1190 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  16. Jia, M. et al. Messenger nanozyme for reprogramming the microenvironment of rheumatoid arthritis. ACS Appl. Mater. Interfaces 15, 338–353 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  17. Kim, J. et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano 13, 3206–3217 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  18. Yang, Y. et al. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and re-polarization. Biomaterials 264, 120390 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  19. Yang, J., Yang, B. & Shi, J. A nanomedicine-enabled ion-exchange strategy for enhancing curcumin-based rheumatoid arthritis therapy. Angew. Chem. Int. Ed. 62, e202310061 (2023).

    Article 
    CAS 

    Google Scholar
     

  20. Xu, C. et al. Arthritic microenvironment actuated nanomotors for active rheumatoid arthritis therapy. Adv. Sci. 10, e2204881 (2023).

    Article 

    Google Scholar
     

  21. Chen, J. et al. Photoacoustic image-guided biomimetic nanoparticles targeting rheumatoid arthritis. Proc. Natl Acad. Sci. USA 119, e2213373119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  22. Koo, S. et al. Ceria-vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis model. Nat. Nanotechnol. 18, 1502–1514 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  23. Del Giudice, G. et al. An ancestral molecular response to nanomaterial particulates. Nat. Nanotechnol. 18, 957–966 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  24. Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  25. Gao, J. et al. Intracerebral fate of organic and inorganic nanoparticles is dependent on microglial extracellular vesicle function. Nat. Nanotechnol. 19, 376–386 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  26. Li, Y. et al. Innate immunity-modulating nanobiomaterials for controlling inflammation resolution. Matter 7, 3811–3844 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  27. Zhang, M. et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 101, 321–340 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  28. Chen, Q. et al. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharm. Sin. B 12, 907–923 (2022).

    Article 
    PubMed 

    Google Scholar
     

  29. Feng, T., Ahmed, W., Ahmed, T. & Chen, L. Nanoparticles derived from herbal preparations may represent a novel nucleic acid therapy. Interdiscip. Med. 2, e20230029 (2024).

    Article 
    CAS 

    Google Scholar
     

  30. Miller, T. E. et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts. Science 368, 649–654 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  31. Gao, F. et al. Artificial photosynthetic cells with biotic–abiotic hybrid energy modules for customized CO2 conversion. Nat. Commun. 14, 6783 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  32. Hou, L. et al. Hybrid-membrane-decorated Prussian blue for effective cancer immunotherapy via tumor-associated macrophages polarization and hypoxia relief. Adv. Mater. 34, e2200389 (2022).

    Article 
    PubMed 

    Google Scholar
     

  33. Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  34. Kobayashi, K., Jimbo, H., Nakamura, Y. & Wada, H. Biosynthesis of phosphatidylglycerol in photosynthetic organisms. Prog. Lipid Res. 93, 101266 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  35. Pali, T., Garab, G., Horvath, L. I. & Kota, Z. Functional significance of the lipid-protein interface in photosynthetic membranes. Cell. Mol. Life Sci. 60, 1591–1606 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  36. Liu, J. et al. Delivery of biomimetic liposomes via meningeal lymphatic vessels route for targeted therapy of Parkinson’s disease. Research 6, 0030 (2023).

  37. Hao, M. et al. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy. Sci. Transl. Med. 12, eaaz6667 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  38. Barber, J. A mechanism for water splitting and oxygen production in photosynthesis. Nat. Plants 3, 17041 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  39. Kafri, M. et al. Systematic identification and characterization of genes in the regulation and biogenesis of photosynthetic machinery. Cell 186, 5638–5655.25 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  40. Hald Albertsen, C. et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev. 188, 114416 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  41. Chen, P. et al. A plant-derived natural photosynthetic system for improving cell anabolism. Nature 612, 546–554 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  42. Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  43. Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 4, 18001 (2018).

    Article 
    PubMed 

    Google Scholar
     

  44. Lan, R. et al. Folate receptor-targeted NIR-II dual-model nanoprobes for multiscale visualization of macrophages in rheumatoid arthritis. Adv. Func. Mat. 33, 2300342 (2023).

    Article 
    CAS 

    Google Scholar
     

  45. Ma, Y. et al. DNA origami as a nanomedicine for targeted rheumatoid arthritis therapy through reactive oxygen species and nitric oxide scavenging. ACS Nano 16, 12520–12531 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  46. Hegarty, L. M., Jones, G. R. & Bain, C. C. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 20, 538–553 (2023).

    Article 
    PubMed 

    Google Scholar
     

  47. Venkatesan, R. et al. Immuno-modulating theranostic gold nanocages for the treatment of rheumatoid arthritis in vivo. Chem. Eng. J. 446, 136868 (2022).

    Article 
    CAS 

    Google Scholar
     

  48. Tardito, S. et al. Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review. Autoimmun. Rev. 18, 102397 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  49. Liu, Y. et al. Multifunctional Janus nanoplatform for efficiently synergistic theranostics of rheumatoid arthritis. ACS Nano 17, 8167–8182 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  50. You, D. G. et al. Metabolically engineered stem cell–derived exosomes to regulate macrophage heterogeneity in rheumatoid arthritis. Sci. Adv. 7, eabe0083 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  51. Rodriguez-Ramiro, I. et al. Pharmacological and genetic increases in liver NADPH levels ameliorate NASH progression in female mice. Free Radic. Biol. Med. 210, 448–461 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  52. Weng, L. et al. Surplus fatty acid synthesis increases oxidative stress in adipocytes and lnduces lipodystrophy. Nat. Commun. 15, 133 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  53. Fearon, U., Canavan, M., Biniecka, M. & Veale, D. J. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 385–397 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  54. Jia, N. et al. Metabolic reprogramming of proinflammatory macrophages by target delivered roburic acid effectively ameliorates rheumatoid arthritis symptoms. Signal Transduct. Target Ther. 8, 280 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  55. Guan, F. et al. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct. Target Ther. 10, 93 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  56. Wang, Z. et al. A targeted exosome therapeutic confers both CfDNA scavenging and macrophage polarization for ameliorating rheumatoid arthritis. Adv. Mater. 35, e2302503 (2023).

    Article 
    PubMed 

    Google Scholar
     

  57. Li, L. et al. M2 macrophage-derived sEV regulate pro-inflammatory CCR2+ macrophage subpopulations to favor post-AMI cardiac repair. Adv. Sci. 10, e2202964 (2023).

    Article 

    Google Scholar
     

  58. Qiao, Y. et al. Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer. Sci. Adv. 6, eaba5996 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  59. Wang, W. et al. Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments. Nat. Commun. 13, 4495 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  60. Zhong, D. et al. Microalgae-based hydrogel for inflammatory bowel disease and its associated anxiety and depression. Adv. Mater. 36, e2312275 (2024).

    Article 
    PubMed 

    Google Scholar
     

  61. Ouyang, J. et al. Biomimetic nanothylakoids for efficient imaging-guided photodynamic therapy for cancer. Chem. Commun. 54, 3468–3471 (2018).

    Article 
    CAS 

    Google Scholar
     

  62. Chen, B., Ni, Y., Liu, J., Zhang, Y. & Yan, F. Bone marrow-derived mesenchymal stem cells exert diverse effects on different macrophage subsets. Stem Cells Int. 2018, 8348121 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  63. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  64. Ma, C. et al. Significantly improving the bioefficacy for rheumatoid arthritis with supramolecular nanoformulations. Adv. Mater. 33, e2100098 (2021).

    Article 
    PubMed 

    Google Scholar
     

Download references

Acknowledgements

The work was supported by grants from the National Key Research and Development Program of China (no. 2023YFF0714200 to Z.S.), the Strategic Priority Research Program of the Chinese Academy of Sciences (no. XDB0930000 to H.Z.), the National Natural Science Foundation of China (nos. 92159304, 82372022 and 82227806 to Z.S.; nos. 82171958 and 82572255 to D.H.; no. 82271998 to Y.L.), the Shenzhen Medical Research Fund (no. B2302021 to Z.S.), the Guangdong Basic and Applied Basic Research Fund (no. 2024A1515030212 to D.G.), the Guangzhou Municipal Science and Technology Department: 2023 Key research and development plan projects (no. 2023B03J1350 to Y.L.), the Shenzhen Outstanding Talents Training Fund (to H.Z.), and the China-Singapore International Joint Laboratory for Rare Earth Imaging Materials and Devices (to Z.S.). W.T. acknowledges the support from the Harvard /Brigham Health & Technology Innovation Fund (no. 2023A004452 to W.T.), Nanotechnology Foundation (no. 2022A002721 to W.T.), and Distinguished Chair Professorship Foundation (no. 018129 to W.T.). We thank C. Liu, Y. Ren and S. Qiao for technical support with photoacoustic blood oxygenation imaging. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Shanghai Luming Biological Technology for providing proteomics services.

Author information

Authors and Affiliations

Authors

Contributions

Z. Li, Y.Y. and Y.S. conceived and designed the study. Z. Li and Y.Y. performed research. Z. Li and Y.Y. conducted the experiments. Z. Li, Y.Y., Y.S., D.H., D.G., Y.Z. and H.Y. performed data analysis. H.Q. and Y. Liu provided clinical samples. Z. Li, Z. Luo, Q.S., N.K., Y. Li, H.Z., W.T. and Z.S. wrote and revised the paper. All authors discussed the results and approved the final paper.

Corresponding authors

Correspondence to
Hairong Zheng, Yingjia Li, Wei Tao or Zonghai Sheng.

Ethics declarations

Competing interests

W.T. consults for (or serves on scientific advisory boards), has lectured (and received a fee), or conducts sponsored research at Harvard Medical School/Brigham and Women’s Hospital for the following entities: Novo Nordisk A/S, Henlius USA Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Mauro Perretti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary key resources tables, Methods, Figs. 1–34 and primary gating strategy for the identification of macrophage subpopulations.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 1f

Unprocessed western blots.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yang, Y., Shi, Y. et al. Bioengineered photosynthetic nanothylakoids reshape the inflammatory microenvironment for rheumatoid arthritis therapy.
Nat. Nanotechnol. (2025). https://doi.org/10.1038/s41565-025-02063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41565-025-02063-3